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A more severe mutant allele at the /s locus

Reid, J.B., Weller, J.L. and Sherriff, L.J. Department of Plant Science
University of Tasmania, GPO Box 252-55
Hobart, Tasmania 7001, Australia

During our ethylmethane sulphonate (1%) mutagenesis program (7), a severely dwarfed
(nana) mutant, AF51, was isolated. The parental cultivar was Torsdag, a tall, quantitative long
day pea. The AF51 mutant responded well to applied gibberellin A3z (GA3), and indeed
treatment of young seedlings with GA3 was required in order to obtain a reasonable seed yield
(5 - 10 seeds per plant). This suggested the mutant might be deficient in GA;, the biologically
active gibberellin in peas (5). Currently, there are mutations at four described loci that block
various steps in GA; biosynthesis (Fig. 1) and lead to a dwarf GA-responsive phenotype in
peas; le which blocks 3P-hydroxylation of GAyy to GA; (3), na which appears to block the
conversion of 7a-hydroxy-kaurenoic acid to GAj; - aldehyde (2), /2 which blocks the oxidation
steps from ent-kaurene to ent-karenoic acid (6) and /s which blocks the conversion of geranyl-
geranyl pyrophosphate (GGPP) to copalyl pyrophosphate (CPP) by reducing kaurene
synthetase A activity (1).

The cross Torsdag x AF51 produced a wild type tall F;. The F, segregated to give 27 tall
: 8 nana progeny, in good accordance with a 3 : 1 segregation (¥’; = 0.09) (Fig. 2). This
indicates that a single gene recessive mutation caused the mutant AF51 phenotype.

Allelism tests were conducted between the new mutant, AF51, and standard lines
possessing four known GA-synthesis mutations (NGB5839, allele /e-3; NGB1766, allele na-1;
K511, allele [h-1, HL181, allele /s-1). All mutations were on a Torsdag genetic background
except na. The F; plants of all crosses were wild type (tall) in phenotype except for the F,
plants of cross AF51 (nana) x HL181 (dwarf), which were dwarf in stature. The F, of cross
AF51 x HL181 segregated to give 41 dwarf: 19 nana progeny, again in agreement with a 3 : 1
segregation (y°; = 1.4) (Fig. 3).

The results indicate that the AF51 mutant possesses a mutation at the /s locus. Because
two mutations at this locus have previously been described, Is-1 (formerly known as Is***?) from
cv. Torsdag by Dr K. Sidorova (4), and Is-2 (formerly known as Is*?%) from cv. Dippes Gelbe
Viktoria by Professor W. Gottschalk (4), the mutant /s allele in AF51 has been designated
Is-3. The Is-1 and Is-2 mutations are not markedly different in severity because no clear
segregation in the F, was observable when the two mutants were crossed. In the present cross,
Is-1 x Is-3 (HL181 x AF51; Fig. 3), the clear segregation in the F, indicates that /s-3 is a more
severe allele than [s-1. Previous genetic analyses had suggested that the /s-/ allele was leaky
(i.e. that it did not completely block GA biosynthesis) because the double mutant, Is-1 /-1, was
shorter than either single mutant (4). However, existance of an alternative synthesis pathway
or another gene coding for kaurene synthetase A activity could not be ruled out. The discovery
of a more severe mutation at the /s locus confirms the suggestion that /s-/ is a leaky mutation.
The Is-3 allele is also recessive to both the wild type Ls allele and the less severe Is-7 allele. The
new [s-3 allele should prove useful in analysing the molecular action of this gene, a question
already under active examination (1).
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Fig. 1. The dominant GA biosynthetic pathway in the shoots of peas and
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Fig. 2. Distribution of stem lengths between nodes 1 and 4 (to the nearest 2 mm) for the F; of
the cross Torsdag x AF51. All plants were grown in a glasshouse under an 18 h photoperiod.
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Fig. 3. Distribution of stem lengths between nodes 1 and 4 (to the nearest 2 mm) for parental
lines HL181 (dwarf) and AF51 (nana) and the F, of the cross HL181 x AF51. As a control,
Torsdag (tall) stem lengths are also shown. All plants were grown in a glasshouse under an

18 h photoperiod.
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