cont. | TABLE OF CONTENTS | Page | |---|------| | Preface | i | | Review | | | Recent advances in gene transfer to peas. | | | H.E. Schroeder, S. Gollasch, L.M. Tabe and T.J.V. Higgins | 1 | | Research Reports | | | Hormone level and sensitivity mutants perform as well as wild-types in tissue culture. | | | N.A. Barratt and P.J. Davies | 6 | | Gene <i>Twt</i> (twisted tendrils) decoupled from the translocation breakpoint became a | | | convenient dominant marker on chromosome 1. | | | V.A. Berdnikov, F.L. Gorel' and S.V. Temnykh | 9 | | A DNA marker correlated with tolerance to <i>Aphanomyces</i> root rot is tightly linked to <i>Er-1</i> . | - | | T.L. Cargnoni, N.F. Weeden and E.T. Gritton | 11 | | Manifestation of the <i>lf</i> gene in callus cultures from different tissues of pea seedlings. | | | T.A. Ezhova and O.V. Efremova | 13 | | A deletion covering the <i>Tl</i> locus in <i>Pisum sativum</i> . | | | F.L. Gorel', V.A. Berdnikov and S.V. Temnykh. | 16 | | Phytohormones in a chlorophyll-deficient pea mutant of the "xantha"-type. | | | E.M. Kof, S.A. Gostimski and V.I. Kefeli | 18 | | Late flowering in mutant E54LF results from mutation of <i>sn</i> to <i>Sn</i> . | | | I.C. Murfet and T.A. LaRue | 21 | | Further evidence that the mutant Fix gene in line Sprint-2Fix is in pea linkage group III. | | | S.M. Rozov, A.Y. Borisov and V.E. Tsyganov | 24 | | Mapping of the chlorophyll mutation vam of the variomaculata - type in linkage group I of | | | pea. | | | S.M. Rozov and F.L. Gorel' | 26 | | Additional information on the linkage of genes apu and uni of Pisum sativum L. | | | K. Sarala and B. Sharma | 28 | | Desynaptic effect of trisomy in Pisum sativum. | | | Dalmir Singh and B. Sharma | 29 | | Location in linkage group III of a gene coding minor vicilin polypeptide. | | | O.G. Smirnova and E.E. Eggi | 31 | | Recombination within the complex locus <i>His</i> (2-6) containing genes for five histone H1 | | | subtypes in pea. | | | Y.A. Trusov, V.S Bogdanova and V.A. Berdnikov | 34 | | New symbiotic mutants of pea obtained after mutagenesis of line SGE. | | | V.E. Tsyganov, A.Y. Borisov, S.M. Rozov and I.A. Tikhonovich | 36 | | Linkage relationship of genes <i>curl</i> and <i>His1</i> is conserved in <i>Pisum sativum</i> and <i>P. fulvum</i> . | | | S.G. Uldalyeva and V.A. Berdnikov | 38 | | Seed mutants in <i>Pisum: lam</i> (low <i>amy</i> lose) a new locus affecting starch composition. | | | T.L. Wang, L.M. Barber, R.A. Burton, K. Denyer, C.L. Hedley, C.M. Hylton, S. | | | Johnson, D.A. Jones, J. Marshall, A.M. Smith, H. Tatge and K.L. Tomlinson | 39 | | Location of the <i>lv</i> gene in pea linkage group VI. | | | J.L. Weller and I.C. Murfet | 41 | Pisum Genetics Volume 26 (1994) ISSN 1320-2510 Editor: I.C. Murfet; Associate Editor: N.F. Weeden Published by the Pisum Genetics Association. Printed at the University of Tasmania, Hobart, Australia. Pisum Genetics Volume 26 1994 Contents | Gene Symbols | | |---|-----| | Clarification on the use of symbols apu and p | et. | Cover. Fig. 4 from Schroeder *et al* pp. 1-5 showing Greenfeast control plants (left) and plants of the T_5 generation of a transgenic pea line (right) carrying the bean α -amylase inhibitor gene, αai . Development of the pea weevil (*Bruchus pisorum*), a major insect pest of pea crops in Australia, was totally inhibited by the αAI protein present in the seeds of the transgenic plants. The seed specific αai gene has now been stably expressed in the transgenic seeds for six generations with no change in the level of αAI expression. No morphological differences were found between the transformed and non-transformed peas.