cont.

TABLE OF CONTENTS	Page
Preface	i
Review	
Recent advances in gene transfer to peas.	
H.E. Schroeder, S. Gollasch, L.M. Tabe and T.J.V. Higgins	1
Research Reports	
Hormone level and sensitivity mutants perform as well as wild-types in tissue culture.	
N.A. Barratt and P.J. Davies	6
Gene <i>Twt</i> (twisted tendrils) decoupled from the translocation breakpoint became a	
convenient dominant marker on chromosome 1.	
V.A. Berdnikov, F.L. Gorel' and S.V. Temnykh	9
A DNA marker correlated with tolerance to <i>Aphanomyces</i> root rot is tightly linked to <i>Er-1</i> .	-
T.L. Cargnoni, N.F. Weeden and E.T. Gritton	11
Manifestation of the <i>lf</i> gene in callus cultures from different tissues of pea seedlings.	
T.A. Ezhova and O.V. Efremova	13
A deletion covering the <i>Tl</i> locus in <i>Pisum sativum</i> .	
F.L. Gorel', V.A. Berdnikov and S.V. Temnykh.	16
Phytohormones in a chlorophyll-deficient pea mutant of the "xantha"-type.	
E.M. Kof, S.A. Gostimski and V.I. Kefeli	18
Late flowering in mutant E54LF results from mutation of <i>sn</i> to <i>Sn</i> .	
I.C. Murfet and T.A. LaRue	21
Further evidence that the mutant Fix gene in line Sprint-2Fix is in pea linkage group III.	
S.M. Rozov, A.Y. Borisov and V.E. Tsyganov	24
Mapping of the chlorophyll mutation vam of the variomaculata - type in linkage group I of	
pea.	
S.M. Rozov and F.L. Gorel'	26
Additional information on the linkage of genes apu and uni of Pisum sativum L.	
K. Sarala and B. Sharma	28
Desynaptic effect of trisomy in Pisum sativum.	
Dalmir Singh and B. Sharma	29
Location in linkage group III of a gene coding minor vicilin polypeptide.	
O.G. Smirnova and E.E. Eggi	31
Recombination within the complex locus <i>His</i> (2-6) containing genes for five histone H1	
subtypes in pea.	
Y.A. Trusov, V.S Bogdanova and V.A. Berdnikov	34
New symbiotic mutants of pea obtained after mutagenesis of line SGE.	
V.E. Tsyganov, A.Y. Borisov, S.M. Rozov and I.A. Tikhonovich	36
Linkage relationship of genes <i>curl</i> and <i>His1</i> is conserved in <i>Pisum sativum</i> and <i>P. fulvum</i> .	
S.G. Uldalyeva and V.A. Berdnikov	38
Seed mutants in <i>Pisum: lam</i> (low <i>amy</i> lose) a new locus affecting starch composition.	
T.L. Wang, L.M. Barber, R.A. Burton, K. Denyer, C.L. Hedley, C.M. Hylton, S.	
Johnson, D.A. Jones, J. Marshall, A.M. Smith, H. Tatge and K.L. Tomlinson	39
Location of the <i>lv</i> gene in pea linkage group VI.	
J.L. Weller and I.C. Murfet	41

Pisum Genetics Volume 26 (1994) ISSN 1320-2510

Editor: I.C. Murfet; Associate Editor: N.F. Weeden Published by the Pisum Genetics Association. Printed at the University of Tasmania, Hobart, Australia.

Pisum Genetics Volume 26 1994 Contents

Gene Symbols	
Clarification on the use of symbols apu and p	et.

Cover. Fig. 4 from Schroeder *et al* pp. 1-5 showing Greenfeast control plants (left) and plants of the T_5 generation of a transgenic pea line (right) carrying the bean α -amylase inhibitor gene, αai . Development of the pea weevil (*Bruchus pisorum*), a major insect pest of pea crops in Australia, was totally inhibited by the αAI protein present in the seeds of the transgenic plants. The seed specific αai gene has now been stably expressed in the transgenic seeds for six generations with no change in the level of αAI expression. No morphological differences were found between the transformed and non-transformed peas.