$\overline{\text{IS}}$ THE LOCUS FOR THE GENE HET ON CHROMOSOME 7 or 5? A NEW LOOK AT LAMPRECHT'S LINKAGE GROUPS

Swiecicki, W.K.

Plant Breeding Station, Wiatrowo 62-100 Wagrowiec, Poland

Previous results (2) analyzing the F_2 generation of cross Wt11291 ($\underline{\text{het}}$) x Wt11744 ($\underline{\text{tl}}$ r wsp) indicated linkage for mutant gene $\underline{\text{het}}$ on chromosome 7. More recent results from crosses between the type line for $\underline{\text{het}}$ and several testerlines are given in Tables 1 and 2. The results from cross Wt11291 ($\underline{\text{het}}$) x Wt11238 ($\underline{\text{A}}$ d $\underline{\text{k}}$ wb s $\underline{\text{b}}$ cp te gp tl r) confirmed linkage between $\underline{\text{het}}$ and markers $\underline{\text{tl}}$ and r but the linkage was somewhat weaker than previously reported (2). In addition, linkage of $\underline{\text{het}}$ with markers $\underline{\text{gp}}$, te and $\underline{\text{cp}}$ from chromosome 5 was found in the same cross (recombination values 21-28%). These results indicate that one gene is in two chromosomes according to the Lamprecht linkage map (1). It is possible that the heterophylus character is controlled by two genes but there is a low probability for the double recessive of one character to occur in mutant induction and the segregation for $\underline{\text{Het-het}}$ is fairly close to a 3:1 ratio (Table 1). Alternatively, all markers linked with $\underline{\text{het}}$ (from chromosomes 5 and 7) are in fact in one chromosome.

The latter explanation seems quite credible, even after 40 years of accepting Lamprecht's version of the map, and is in accord with the recent results of Weeden and Wolko (3) who suggest some major rearrangements to the previous $\underline{\text{Pisum}}$ gene map. For example, according to their results, the segment $\underline{\text{det curl r}}$ $\underline{\text{tl}}$ from chromosome 7 is linked with the $\underline{\text{gp}}$ $\underline{\text{teu}}$ $\underline{\text{lum-3}}$ region of chromosome 5.

The present results fit the more recent map and indicate that $\underline{\text{het}}$ is on chromosome 5, probably between r and gp.

Table 1. Monohybrid segregation data for the F_2 of cross Wt11291 $(\underline{het})\ x$ Wt11238 (testerline)

Phenotype/Nu	mber	Total	Chi-square (3:1)		
<u>T1</u> 298	<u>tl</u> 91	389	0.54		
<u>Cp</u> 233	<u>ср</u> 62	295	2.50		
<u>R</u> 251	<u>r</u> 65	316	3.31		
<u>Te</u> 214	<u>te</u> 81	295	0.95		
<u>Gp</u> 303	<u>gp</u> 72	375	6.73**		
<u>Нет</u> 296	<u>het</u> 76	372	4.14*		

^{*,**}Probability less than 0.05 and 0.01, respectively.

Table 2. Dihybrid F_2 segregation data for \underline{het} and several gene markers in the F_2 of cross Wt11291 x Wt11238

Phenotype/Number				Total	Joint chi-sq.	Rec. frac.	SE	Phase
<u>Tl Het</u> 218	Tl het 68	tl Het 78	tl het 8	372	8.53**	34.6	4.5	R
<u>R Het</u> 190	R het 60	r Het 60	r het 4	314	9.89**	29.1	5.1	R
Cp Het 175	Cp het 57	cp Het 58	cp het	293	11.45***	25.9	5.4	R
Te Het 156	Te het 57	te Het 77	te het	293	18.78***	21.7	5.5	R
Gp Het 224	Gp het 71	gp Het 65	gp het 4	364	11.41***	28.1	4.8	R
<u>Tl Cp</u> 188	<u>Tl cp</u> 40	<u>tl Cp</u> 45	tl cp 22	295	7.29**	38.7	3.8	С
<u>Tl Te</u> 174	Tl te 54	<u>tl Te</u> 40	<u>tl te</u> 27	295	7.18**	39.4	3.8	С
Tl Gp 248	<u>Tl gp</u> 42	tl Gp 55	tl gp 30	375	18.35***	34.4	3.1	С
<u>Cp R</u> 186	Cp r 43	<u>cp R</u> 40	ср r 17	286	3.36	41.6	4.0	С
<u>Te R</u> 172	<u>Te r</u> 38	<u>te R</u> 54	<u>te r</u> 22	286	3.96*	41.6	4.0	С
Gp R 211	<u>Gp r</u> 46	gp R 40	<u>gp r</u> 19	316	6.01*	39.4	3.7	С
Tl R 239	Tl r 6	tl R 12	<u>tl r</u> 59	316	219.14***	5.9	1.4	С

^{*,**,***} Probability less than 0.05, 0.01 and 0.001, respectively.

^{1.} Blixt, S. 1972. Agri Hort. Genet. 30:1-293.

^{2.} Swiecicki, W.K. 1989. PNL 21:75-76.

^{3.} Weeden, N.F. and B. Wolko. 1990. <u>In</u> Genetic Maps, Ed. S. O'Brien, Cold Spring Harbor, pp 6106-6112.